Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS.

نویسندگان

  • Y Maru
  • K L Peters
  • D E Afar
  • M Shibuya
  • O N Witte
  • T E Smithgall
چکیده

The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr-Abl.

The c-Fes protein-tyrosine kinase exhibits strong expression in myeloid hematopoietic cells. Previous studies have shown that Fes induces differentiation in the chronic myelogenous leukemia-derived cell line K-562, suggesting that the Fes signal for differentiation is dominant to the Bcr-Abl signal for transformation in these cells. In addition, Fes has been shown to associate with and phosphor...

متن کامل

Tyrosine phosphorylation of shc in response to B cell antigen receptor engagement depends on the SHIP inositol phosphatase.

Tyrosine phosphorylation of Shc in response to B cell Ag receptor (BCR) engagement creates binding sites for the Src homology 2 (SH2) domain of Grb2. This facilitates the recruitment of both Grb2. Sos complexes and Grb2. SHIP complexes to the plasma membrane where Sos can activate Ras and SH2 domain-containing inositol phosphatase (SHIP) can dephosphorylate phosphatidylinositol 3,4,5-trisphosph...

متن کامل

Erythropoietin induces tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product in human erythropoietin-responsive cells.

Erythropoietin (EPO) is a hematopoietic growth factor that stimulates the proliferation and differentiation of erythroid progenitor cells. Although the EPO receptor has no kinase domain, EPO rapidly induces tyrosine phosphorylation of several proteins in EPO-responsive cells. Therefore, the receptor activation by the ligand could induce tyrosine-kinase activity of unidentified cellular protein(...

متن کامل

BCR-ABL Affects STAT5A and STAT5B Differentially

Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors linking extracellular signals to target gene transcription. Hematopoietic cells express two highly conserved STAT5-isoforms (STAT5A/STAT5B), and STAT5 is directly activated by JAK2 downstream of several cytokine receptors and the oncogenic BCR-ABL tyrosine kinase. Using an IL-3-dependent cell...

متن کامل

SLP-65: A New Signaling Component in B Lymphocytes which Requires Expression of the Antigen Receptor for Phosphorylation

The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-alpha/Ig-beta heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 1995